Developing a Two-Stage Rotary Compressor for CO2 Heat Pump Systems with Refrigerant Injection

Tetsuhide Yokoyama1*, Kei Sasaki2, Shin Sekiya3, Hideaki Maeyama4

1,2,3Mitsubishi Electric Corporation Advanced Technology R&D Center
8-1-1, Tsukaguchi-Honnachi, Amagasaki, Hyogo, Japan
Tel: 81-6-6497-7163, Fax: 81-6-6497-7291, Postcode: 661-8661
1E-mail: Yokoyama.Tetsuhide@ak.MitsubishiElectric.co.jp
2E-mail: Sasaki.Kei@da.MitsubishiElectric.co.jp
3E-mail: Sekiya.Shin@eb.MitsubishiElectric.co.jp

4Mitsubishi Electric Corporation Shizuoka Works
3-18-1, Oshika, Suruga-ku, Shizuoka-City, Japan
Tel: 81-54-287-3112, Fax: 81-54287-3127, Postcode: 422-8528
E-mail: Maeyama.Hideaki@dx.MitsubishiElectric.co.jp

ABSTRACT

The reduction of greenhouse gas emissions has been the focus of global attention. As an alternative refrigerant to HFC, CO2 has been considered. As another promising possibility of energy conservation, use of heat pump systems has also been spreading. However, conventional heat pump systems have problems remaining, such as inadequate heating capacity or overheating of the compressor due to reduced performance under ambient low temperature condition. To solve these problems, we developed a two-stage rotary compressor for CO2 heat pump systems, examined the effects of the injection into an intermediate pressure connector under the condition of a high pressure-ratio and offered proof of its high efficiency. We also examined unique performance characteristics of the two-stage rotary compressor by its loss analysis. We clarified the merits of the two-stage rotary compressor’s performance compared to those of a single-stage rotary compressor.

1. INTRODUCTION

The reduction of greenhouse gas emissions involving HFC refrigerants, e.g. by shifting to natural refrigerants, has been the focus of global attention since the Kyoto Protocol was concluded in 1997 and promulgated in 2005. As an alternative refrigerant to HFC, CO2 has been considered. As another promising possibility of energy conservation, use of heat pump systems has also been spreading.

However, further development of conventional heat pump systems is necessary because certain problems remain, such as inadequate heating capacity or overheating of the compressor due to reduced performance under ambient low temperature conditions. To solve these problems, a two-stage compression cycle with refrigerant injection is used (Saito, 2007). Unfortunately, other problems arise, such as mixture loss on refrigerant injection into the compression chamber of a single-stage compressor. In the case of CO2 refrigerant, there is the disadvantage of being more likely to leak compression gas because of operation under high-pressure conditions (Yokoyama et al., 2006).

To resolve these issues, a two-stage rotary compressor is very useful. We designed and manufactured it for use in household applications of 2HP (1.5kW) input. The following experiment was performed to clarify the merits and weak points of the two-stage rotary compressor in comparison to a single-stage type (Maeyama et al., 2006). We
• analyzed compressor loss by measuring the indicated work in the cylinder, and improved its performance;
• measured its performance at various rotational speeds and various pressure ratios;
• measured its performance with refrigerant injection under the condition of a high pressure-ratio equivalent under ambient low temperature (below zero).
2. PROBLEM DESCRIPTION

2.1 Leakage Characteristics of CO2 Refrigerant

We estimated leakage mass flow rate of ideal refrigerant gas through the radial clearance of its rolling piston by the isentropic flow model through a convergent nozzle. It is assumed that a rotary compressor is operated in the condition of ASHRAE-T; that the radial clearance gap of its rolling piston is 10 μm constant; that the leakage cross-section area \( A_{\text{leak}} \) is proportional to its representative length equal to \( V_{\text{st}}^{1/3} \); and that the leakage speed equals sound speed of the critical flow. Table 1 shows the leakage characteristics of CO2 refrigerant with a single type, compared to conventional refrigerants, (R22, R410A), and compared to the 1st-stage cylinder of a two-stage type.

- The estimated CO2 leakage percent of the ideal mass flow rate \( \frac{G_{\text{leak}}}{G_{\text{s.i}}} \) is about three times that of R22 or R410A. CO2 refrigerant has characteristics to leak more easily than conventional refrigerants due to high operating pressure. Especially its small displacement for the same indicated power causes that disadvantage.
- It is expected that the two-stage type decreases the CO2 leakage percent of the ideal mass flow rate \( \frac{G_{\text{leak}}}{G_{\text{s.i}}} \) by a 2/3 ratio compared to a single type.

Table 1: Leakage characteristics of CO2 refrigerant with a single type, compared to those of R22 and R410A, and compared to a two-stage type in the condition of ASHRAE-T (\( \text{CT}/\text{ET}=54.4/7.2[^{\circ}\text{C}] \), \( \text{SC}/\text{SH}=8.3/27.8[\text{K}] \), but in the case of CO2 \( P_d \) is estimated in the condition of maximum COP)

<table>
<thead>
<tr>
<th>Refrigerant</th>
<th>Single type</th>
<th>1st-stage of two-stage type</th>
</tr>
</thead>
<tbody>
<tr>
<td>R22 (Conventional ref.)</td>
<td>R410A</td>
<td>CO2</td>
</tr>
<tr>
<td>( P_d ): Discharge Pressure [MPa]</td>
<td>2.15</td>
<td>3.39</td>
</tr>
<tr>
<td>( P_s ): Suction Pressure [MPa]</td>
<td>0.63</td>
<td>1.00</td>
</tr>
<tr>
<td>( P_d/P_s ): Pressure ratio</td>
<td>3.43</td>
<td>3.39</td>
</tr>
<tr>
<td>( \rho_s ): Suction density [kg/m³]</td>
<td>23.3</td>
<td>32.36</td>
</tr>
<tr>
<td>( V_{\text{st}} ): Displacement (at ( W_{\text{in}}=1\text{kW},60\text{rps} )) [cm³]</td>
<td>20.3</td>
<td>13</td>
</tr>
<tr>
<td>Ratio of representative length to CO2=( V_{\text{st}}/(V_{\text{st}} \text{of CO2})^{1/3} )</td>
<td>1.76</td>
<td>1.52</td>
</tr>
<tr>
<td>( h ): Height of cylinder [mm]</td>
<td>17.64</td>
<td>15.20</td>
</tr>
<tr>
<td>( A_{\text{leak}} = h \times \delta_r ): Leakage cross-section area of ( \delta_r ) [mm²]</td>
<td>1.8E-01</td>
<td>1.5E-01</td>
</tr>
<tr>
<td>( n = \ln(P_d/P_s)/\ln(\rho_s/\rho_c) ): Isentropic exponent</td>
<td>1.11</td>
<td>1.08</td>
</tr>
<tr>
<td>( \rho_c ): Critical density [kg/m³]</td>
<td>43.38</td>
<td>61.32</td>
</tr>
<tr>
<td>( u_c ): Sound speed of the critical flow [m/s]</td>
<td>178.7</td>
<td>187.8</td>
</tr>
<tr>
<td>( G_{\text{leak}} = A_{\text{leak}} \times u_c / \rho_c ): Leakage mass flow rate [kg/s]</td>
<td>1.4E+03</td>
<td>1.8E+03</td>
</tr>
<tr>
<td>( G_{\text{s.i}} = \rho_s \times V_{\text{st}} \times 60 ): Ideal mass flow rate (at 60fps) [kg/s]</td>
<td>2.8E+04</td>
<td>2.5E+04</td>
</tr>
<tr>
<td>( \frac{G_{\text{leak}}}{G_{\text{s.i}}} ): Leakage percent of ideal mass flow rate</td>
<td>4.8%</td>
<td>6.9%</td>
</tr>
</tbody>
</table>

2.2 Mixture Loss on Refrigerant Injection

![Figure 1: Structure of rotary compression mechanism in single type cylinder with refrigerant injection](image)

![Figure 2: P-V diagram in cylinder of single rotary compressor with vapor refrigerant injection](image)
Figure 1 shows the structure of the compression mechanism in a single type cylinder with a refrigerant injection port. Refrigerant under intermediate pressure is injected into a compression chamber through the port, while the port is opened by eccentric rotation of the rolling piston. Figure 2 shows a P-V diagram in the single rotary compression chamber with refrigerant injection. If a two-stage compression cycle uses a single rotary compressor, there is the problem that refrigerant injection increases the indicated power by mixture loss (Sekiya et al., 2005), compared to that of ideal isentropic compression.

3. EXPERIMENTAL PROCEDURE

3.1 Experimental Model

We made experimental models of the two-stage rotary compressor. Figure 3 shows their structure and measuring instruments. Table 2 shows their specifications. The two-stage type has two cylinders in series, a crankshaft, a motor and a semi-hermetic shell on the high-pressure side. A rolling piston-type compression mechanism in the 1st-stage cylinder compresses CO2 refrigerant from suction pressure \( P_s \) to intermediate pressure \( P_m \) and discharges it into its intermediate connector. That in the 2nd-stage cylinder compresses it from \( P_m \) to discharge pressure \( P_d \) discharges it into the shell and discharges it out of the shell through flow channels of the motor. Its intermediate connector has a port to inject it under intermediate pressure. We fixed displacement of the 1st-stage cylinder \( V_{st1} \) on 4.8\( \text{cm}^3 \), to target household applications of 2HP; and decided that the basis of displacement ratio \( V_{st2}/V_{st1} \) was 0.65, to keep its good performance in the wide range of pressure ratio \( P_d/P_s \), (the experimental range from 1.8 to 6.5).

3.2 Experimental Measurement and Performance Evaluation Method

Figure 3 shows that we measured refrigerant temperatures and static pressures in a suction pipe of a suction muffler and in a discharge pipe out of the shell, in addition to upstream of the suction port and downstream of the discharge valve of each cylinder. We also measured refrigerant mass flow rates (\( G_{inj} \)) in liquid phase by use of mass flow meters based on Coriolis. They are located in a main flow circuit and in an injection flow circuit downstream of a gas cooler. Moreover, we measured the input power into the motor with a digital power meter. With the above experimental data, we calculated the volumetric efficiency \( \eta_v \) and the compressor efficiency \( \eta_c \) by Eqs. (1) and (2) with a computer. Here we calculated specific enthalpy growth (\( \Delta h_1 \), \( \Delta h_2 \)) from suction to discharge within the isentropic compression process in each cylinder, by use of experimental data on the temperatures and the pressures and the refrigerant database ‘REFPROP’ from NIST (Lemmon et al., 2002).

Table 2: Specifications of experimental model of two-stage rotary compressor

<table>
<thead>
<tr>
<th>Compressor type</th>
<th>Two-stage twin rotary, Rolling piston type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shell type</td>
<td>Semi-hermetic shell On high pressure side</td>
</tr>
<tr>
<td>( V_{st1} ): Displacement ( [\text{cm}^3] )</td>
<td>4.8</td>
</tr>
<tr>
<td>( V_{st2}/V_{st1} ): Displacement ratio</td>
<td>0.65 (basis); 0.6~0.8</td>
</tr>
<tr>
<td>Refrigerant</td>
<td>R744 (CO2)</td>
</tr>
<tr>
<td>Motor</td>
<td>Brushless DC motor</td>
</tr>
<tr>
<td>Usage</td>
<td>Heat pump systems</td>
</tr>
<tr>
<td>Heating capacity ( [\text{kW}] )</td>
<td>6.0 (basis); 4.5~7.5</td>
</tr>
<tr>
<td>Input power ( [\text{HP}] )</td>
<td>2 (basis); 1~3</td>
</tr>
</tbody>
</table>

Figure 3: Structure of two-stage rotary compressor and measuring instruments

:\ Thermocouple \ : Pressure strain gage \ : Piezometer

\( P \) : Thermocouple \( T \) : Pressure strain gage \( \varnothing \) : Piezometer

International Compressor Engineering Conference at Purdue, July 14-17, 2008
Figure 4 shows the P-h curves in the ideal compression process of the two-stage type, compared to P-h curves of the real compression process of the two-stage type. We calculated the ideal specific enthalpy in suction of the 2nd-stage by Eq. (3) assuming isobaric change without mixture loss. Here $\alpha$ is the mass flow ratio of the refrigerant injection, and equals $G_{inj}/(G_d-G_{inj})$.

$$h_{s2,i} = \frac{(h_{d1,i} + \alpha \times h_{inj})}{1 + \alpha}$$

3.3 Compressor Loss Analysis Method

Table 3: Classification of loss factors of two-stage rotary compressor

<table>
<thead>
<tr>
<th>Input power (into Electric motor), $W_{mot}$</th>
<th>Motor loss</th>
<th>Motor output, $W_{out}$</th>
<th>Mechanical loss</th>
<th>Indicated power, $W_{in}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal power for actual mass flow rate, $W_{in,i}$</td>
<td>$1^{st}$-stage suction undershooting loss</td>
<td>$1^{st}$-stage heat loss</td>
<td>Preheat loss</td>
<td>$1^{st}$-stage reexpansion loss</td>
</tr>
<tr>
<td>$1^{st}$-stage leakage loss</td>
<td>$1^{st}$-stage discharge overshooting loss</td>
<td>Intermediate pressure, $W_{lp}$</td>
<td>Pulsation loss, $W_{lpm}$</td>
<td>$2^{nd}$-stage suction undershooting loss</td>
</tr>
<tr>
<td>$2^{nd}$-stage heat loss</td>
<td>$2^{nd}$-stage reexpansion loss</td>
<td>$2^{nd}$-stage leakage loss</td>
<td>Preheat loss, $W_{lpre2}$</td>
<td>$2^{nd}$-stage discharge overshooting loss</td>
</tr>
<tr>
<td>$2^{nd}$-stage leakage loss</td>
<td>$2^{nd}$-stage discharge undershooting loss</td>
<td></td>
<td>Heat loss in compressing</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 shows classification of the loss factors of the two-stage rotary compressor. It is abbreviated to explain the loss analysis method overall, which refers to the conventional method of a single type (Koda et al., 1989). Below are explained the peculiar losses of the two-stage rotary compressor. 1) Intermediate pressure pulsation loss \( W_{\text{Lpm}} \) is defined as the sum of 1st-stage discharge overshooting loss and the 2nd-stage suction undershooting loss and is strongly affected by pressure drops and fluctuation delay of the intermediate pressure. 2) 2nd-stage preheat loss \( W_{\text{Pre2}} \) is defined as Eq. (4). Each specific enthalpy is shown in Figure 4. \( \Delta h_{2,i} \) equals specific enthalpy growth from an experimental suction point to a discharge point within the isentropic compression process in the 2nd-stage cylinder.

\[
<2\text{-stage preheat loss}>: W_{\text{Lpm}}=(\Delta h_{2,i}-\Delta h_{2,j}) \times G_d/3600
\]  

(4)

4. EXPERIMENTAL RESULTS

4.1 Compressor Loss Analysis and Effects of Intermediate Pressure Pulsation

[Figures 5, 6, 7, 8, 9 are included here, showing pressure fluctuations, P-V diagrams, volume fluctuations, and compressor loss ratio comparisons.]

Figure 5: Pressure fluctuations in each cylinder

Figure 6: P-V diagram in each cylinder of original two-stage rotary compressor

Figure 7: Fluctuation of original intermediate volume

Figure 8: Intermediate pressure pulsation loss at various volumes of intermediate connector

Figure 9: Measured compressor loss ratio compared with original two-stage type and single type, on the base condition \( (P_d/P_s=2.53, 60\text{[rps]}, SH=10\text{[K]}) \)
Figure 5 shows pressure fluctuations in the compression chambers and the suction ports in each cylinder. Figure 6 shows the P-V diagram in each cylinder of the two-stage rotary compressor. The two-stage type with the $V_{st2}/V_{st1}$ equal to 0.65 was tested on the base condition ($P_d/P_s=2.53$, 60[rps], SH=10[K]). Figure 7 shows the fluctuation of the intermediate volume $V_m$ which is defined as the sum of the volume of the intermediate connector $V_{m\_con}$ and that of the 2nd-stage suction chamber. Additionally, the volume of the 1st-stage compression chamber is added to the sum, while the discharge valve of the 1st-stage compression chamber is open. $V_m$ is smaller than the average volume in the region from 200 to 360 degrees and has the minimum point. Then pressure in the 1st-stage compression chamber tends to overshoot in the degree region, and to cause an increase in $W_{lpm}$.

Figure 8 shows intermediate pressure pulsation loss at various $V_{m\_con}$ ratios to $V_{st1}$. We thought of a method to decrease intermediate pressure pulsation loss. We tried to damp the pressure pulsation of the intermediate connector and to decrease the 1st-stage discharge overshooting loss by increasing the intermediate volume. It was confirmed that the $W_{lpm}$ was almost zero, when the $V_{m\_con}$ ratio to $V_{st1}$ got as large as about 15. (From the next section, the two-stage type used the reformed intermediate volume.) Figure 9 shows the compressor loss ratio to the motor output of the two-stage type with the original intermediate volume, compared to the single type of almost equal specifications. Compressor loss analysis was operated on the base condition.

- For loss ratio of ①, Mechanical loss, that of the two-stage type is greater.
- For loss ratio of ②, Leakage loss, heat loss, etc. (including the rest not separated by the indicated loss analysis), that of the two-stage type is less.
- For loss ratio of ③, Pressure drop and pulsation loss, that of the two-stage type is greater due to large pressure pulsation in the intermediate pressure.

### 4.2 Performance at Various Rotational Speeds

Figure 10 shows performance of the two-stage type at various rotational speeds, compared to the single type of almost equal specifications. Volumetric efficiency $\eta_v$ and compressor efficiency ratio $\eta_c/\eta_{c0}$ were measured on a certain constant that $P_d/P_s=2.53$. Here $\eta_{c0}$ was the base value, $\eta_c$ of the single type measured on the base condition.

- $\eta_v$ of the two-stage type had a lead gap of more than 5% over that of the single type. In particular, the lead increased significantly in the low-speed region because the single type it was more likely to leak.
- $\eta_c/\eta_{c0}$ of the two-stage type was superior to that of the single type in the speed region lower than 70rps. And it was inferior in the high-speed region because of a greater mechanical loss ratio.

![Figure 10: Performance at various rotational speeds, comparing two-stage type and single type](image)

### 4.3 Performance at Various Pressure Ratios and Effects of Refrigerant Injection

Figure 14 shows performance of the two-stage type at various pressure ratios, compared to that of the single type of almost equal specifications. $\eta_v$ was measured on a certain constant that the heating capacity equals 6kW. When $P_d/P_s$ was larger than 4.5, refrigerant injection decreased the discharge temperature $T_d$ to equal the allowance temperature (120[deg C]).

- $\eta_v/\eta_{v0}$ of the two-stage type was superior to that of the single type in the pressure ratio region higher than 3.5,
Figure 13: Image P-h curve of two-stage type with wet vapor injection (quality > 0.5) compared to that with liquid injection equivalent under ambient low temperature.

- In the case of the two-stage type, $\eta_v/\eta_{v0}$ is improved, if refrigerant in wet or dry condition is injected into its intermediate connector. (The reason is described in the next paragraph.)
- To the contrary, $\eta_v/\eta_{v0}$ of the single type is decreased due to mixture loss caused with refrigerant injection.
- $\eta_v/\eta_{v0}$ of the two-stage type was also good in the pressure ratio region lower than 3 because the reformed intermediate volume made $W_{tPM}$ a little.

Here we consider the effects of injecting refrigerant in wet or dry condition (quality > 0.5) into the intermediate connector of the two-stage type. Figures 11 and 12 show performance characteristics examined at various pressure ratios, such as $T_d$ and $P_m/(P_s\times P_d)^{0.5}$. As $P_s/P_d$ gets large, $T_d$ increases and $P_m/(P_s\times P_d)^{0.5}$ decreases to increase the pressure ratio of the 2nd-stage $P_d/P_m$. Then, wet vapor injection (quality > 0.5) leads not only to decreasing $T_d$ to equal the allowance temperature, but also to increasing $P_m/(P_s\times P_d)^{0.5}$ to approach 1, which is generally the optimal value. Figure 13 shows image P-h curve of the two-stage type with vapor injection to compared to that with liquid injection. Defining volumetric efficiencies of the 1st-stage cylinder as $\bar{\eta}_v$, and that of the 2nd-stage cylinder as $\bar{\eta}_v^2$, Eq. (5) approximately relates the density in the 2nd-stage suction point $\rho_{s2}$ with that in the 1st-stage suction point $\rho_{s1}$.
Injecting refrigerant, \( \rho_{s2} \) becomes \((1+\alpha)\) times larger than the density without injection \( \rho_{s20} \), to hope that \( P_m \) rises. The wet vapor injection (quality > 0.5) delivers the expected results. On the other hand, \( P_m \) rises little or lower in the case of the liquid injection because \( \alpha \) is half less than of the wet vapor injection due to its great cooling effect, to keep \( T_d \) the same allowance temperature (120[deg C]). Thus the wet vapor injection can improve the performance by balancing each pressure ratio of 1\textsuperscript{st}-stage and 2\textsuperscript{nd}-stage in addition to by keeping down \( T_d \) and increasing \( G_d \) and heating capacity under the condition of the high pressure-ratio. It is important that the two-stage type is designed as \( P_m \) approaches the optimal value \((P_s \times P_d)^{0.5}\), considering not only \( \frac{V_{s2}}{V_{s1}} \), but also \( \alpha \) and its quality.

5. CONCLUSIONS

This paper described how we developed the two-stage rotary compressor for CO2 heat pump systems with refrigerant injection; clarified its unique performance characteristics such as the intermediate pressure pulsation loss by the experimental analysis results; and clarified its merits compared to the single type.

<Merit 1> The two-stage type is superior to the single type with respect to compressor efficiency in the condition of low rotational speed or high pressure-ratio because it has characteristics more unlikely to leak compression gas.

<Merit 2> The two-stage type is superior to the single type with respect to compressor efficiency and heating capacity because it has the ability to improve these performances with refrigerant injection in the condition of the high pressure-ratio.

If we properly design and operate the two-stage rotary compressor with refrigerant injection, we can greatly contribute to energy conservation by use of heat pump systems including CO2 and the other refrigerants.

NOMENCLATURE

\[
\begin{align*}
G & : \text{Mass flow rate} \ [\text{kg/h}] \\
h & : \text{specific enthalpy} \ [\text{J/kg}] \\
P & : \text{Pressure} \ [\text{MPa}] \\
T & : \text{Temperature} \ [\text{deg C}] \ or \ [\text{K}] \\
W & : \text{Power} \ [\text{W}] \\
\rho & : \text{Density} \ [\text{kg/m}^3] \\
\end{align*}
\]

\textbf{Subscripts}

\begin{align*}
d & : \text{Discharge} \\
m & : \text{Intermediate} \\
s & : \text{Suction} \\
i & : \text{Ideal} \\
0 & : \text{Basic} \\
1 & : 1\textsuperscript{st}-stage \\
2 & : 2\textsuperscript{nd}-stage \\
\text{inj} & : \text{Injection} \\
\end{align*}

REFERENCES


ACKNOWLEDGEMENT

Part of this study was carried out with the financial support of the New Energy and Industrial Technology Development Organization (NEDO) of Japan.